The Chinese University of Hong Kong

« Recommender systems must adapt to user preferences by
learning from feedback, such as click rates.

» Conversational Recommender Systems (CRS) can also
proactively query users to obtain additional feedback.
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Fig. 1: The workflow of our algorithm design.

Example: CRS can ask users gquestions to quickly elicit their
preferences, e.g., “Do you enjoy jazz music?”

Two key techniques:

1. Gradient-based EVOI. Replaces expensive Bayesian poste-
rior updates with efficient incremental updates using SGD.

2. Smoothed key term contexts. Adds random perturbations to
gueries to uncover finer-grained user preferences.

EVOI provides an effective query selection strategy, while con-
versational bandits offer long-term performance guarantees.
Two algorithms in Bayesian and frequentist frameworks:

1. ConTS-EVOI: Based on Thompson Sampling (Bayesian).
2. ConUCB-EVOI: Based on LInUCB (frequentist).
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Expected Value of Information (EVOI):

« Quantifies the value of a query based on its expected im-
provement in recommendation quality.

Conversational Bandits:

* Models conversational recommendation as a multi-armed
bandit problem to balance exploration and exploitation.

Limitations:

» Traditional EVOI adopts a myopic (greedy) strategy and lacks
theoretical guarantees for long-term performance metrics.

» Existing conversational bandit algorithms lack a principled
mechanism for selecting informative queries.

Interaction Protocol:
 Foreachtimestept=1,2,...,1"
— The CRS receives a set of arms A; (i.e., recommendable

items). Each arm a € A; is associated with a feature
vector z, € RY.

— The CRS selects an arm a; € A; (i.e., recommend an
item), and observes a reward r; = x| 8* +1y (i.e., whether
the user clicks on the item), where 6™ is the unknown user
preference vector, and 7; IS noise.

— The CRS optionally initiates a query k; € K and observes

an additional reward 7y = @ 6* + 7;, where each query
k € K is also associated with a feature vector x;. € R
* The objective is to minimize the cumulative regret:

1
R(T) = Z (max x) o — a:gﬂ*) ,

—1 aEAt

while using as few queries as possible.

Theorem 1. With probability at least 1 — o, the cumulative regret of ConTS-EVOI scales in O (d\/T log(T)) .

Theorem 2. With probability at least 1 — o, the cumulative regret of ConUCB-EVOI scales in O <\/ dT log('T') + d) .

Both algorithms achieve a v/d improvement in their dependence on the time horizon 7', compared to prior approaches.
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Fig. 2: Comparison of cumulative regret (lower is better). Fig. 3: Comparison of estimation error (lower is better).



