
Detecting Cross-Language Memory Management
Issues in Rust

Zhuohua Li1, Jincheng Wang1, Mingshen Sun2, and John C.S. Lui1

1 The Chinese University of Hong Kong
{zhli, jcwang, cslui}@cse.cuhk.edu.hk

2 Individual Researcher
bob@mssun.me

Abstract. Rust is a promising system-level programming language that
can prevent memory corruption bugs using its strong type system and
ownership-based memory management scheme. In practice, program-
mers usually write Rust code in conjunction with other languages such as
C/C++ through Foreign Function Interface (FFI). For example, many no-
table projects are developed using Rust and other programming languages,
such as Firefox, Google Fuchsia OS, and the Linux kernel. Although it is
widely believed that gradually re-implementing security-critical compo-
nents in Rust is a way of enhancing software security, however, using FFI
is inherently unsafe. In this paper, we show that memory management
across the FFI boundaries is error-prone. Any incorrect use of FFI may
corrupt Rust’s ownership system, leading to memory safety issues. To
tackle this problem, we design and build FFIChecker, an automated
static analysis and bug detection tool dedicated to memory management
issues across the Rust/C FFI. We evaluate our tool by checking 987 Rust
packages crawled from the official package registry and reveal 34 bugs in
12 packages. Our experiments show that FFIChecker is a useful tool
to detect real-world cross-language memory management issues with a
reasonable amount of computational resources.

Keywords: Static Analysis · Rust · Bug Detection.

1 Introduction

Rust is an emerging programming language that is famous for its strong security
guarantees and high performance. Many companies and open source communities
have been re-writing their software in Rust in an incremental manner, i.e., while
most of the source code remains intact, some security-critical components are
re-written in Rust. For example, Firefox contains a considerable amount of Rust
code [4], and the Linux kernel is in the process of integrating Rust as its second
language for kernel development [30,21]. New Rust projects also usually integrate
with third-party C/C++ libraries to avoid reinventing the wheels. Rust can be
used in conjunction with other languages because it supports Foreign Function
Interface (FFI), which enables Rust to call external interfaces and exchange
arbitrary data.

2 Z. Li, J. Wang, M. Sun, and J. Lui

The incremental development of Rust code is widely believed to improve
the security of software. However, calling external code is inherently unsafe in
Rust because the Rust compiler cannot perform security checks across the FFI
boundaries. Programmers may accidentally misuse the unsafe abilities that lead
to vulnerabilities. In addition, different assumptions made by different languages
make it possible for attackers to maneuver between the FFI boundaries and
exploit these vulnerabilities [24]. Recent empirical studies [12,41] have shown
that the incorrect use of FFI is one of the most significant causes of real-world
memory-safety bugs. Even for Rust packages written in pure safe Rust (i.e.,
without using FFI), they may still be affected because they may depend on
other packages that include FFI. According to our statistics (§2.2), among
around 77, 000 packages on the official Rust package registry3, more than 72%
of the packages depend on at least one package that contains unsafe FFI calls.
Therefore excluding FFI is unrealistic in the current Rust ecosystem; instead,
people have made lots of efforts to secure the use of FFI. For example, the
Rust community has drafted several guidelines for writing unsafe code, including
FFI [39,34,37,36]. Some Rust packages such as rust-bindgen and safer_ffi
can automatically generate FFI, preventing developers from misusing it. However,
they can only help developers to write correct interfaces with appropriate data
types. Memory corruption caused by heap memory allocation/deallocation across
the FFI boundaries remains an open problem. Moreover, Rust has a unique
ownership system for memory management (§2.1), which creates its own paradigm
of memory safety issues [41,31,22]. Hence existing works on misusing FFI for
other memory-safe programming languages [20,19] such as Java and Python are
no longer applicable.

In this paper, we study the security impacts of heap memory management
issues across the FFI boundaries, especially those caused by the combination of
Rust’s ownership-based memory management and C/C++’s manual memory
management. To tackle this problem, we propose to use static analysis techniques
to detect potential memory management bugs across the FFI boundaries. Our
method is based on the theory of Abstract Interpretation [7,8,9]. We design
an augmented taint analysis algorithm to keep track of the states of heap
memory, which captures the paradigms created by the ownership-based memory
management. We implement our tool called FFIChecker, which automatically
collects all the generated LLVM intermediate representation (IR) for both Rust
and C/C++ code, then performs static analysis and outputs diagnostic reports.
Security analysts can then inspect the reports and determine whether there are
any real bugs. Our evaluation shows that FFIChecker can successfully detect
real-world memory safety issues within acceptable time and with reasonable
precision. To our knowledge, our work is the first effort that addresses the
memory management issues across FFI boundaries in Rust programs.

We summarize our contributions as follows.

– We show the potential security and memory management issues when pro-
grammers intermix Rust and C/C++ via FFI.

3 https://crates.io

https://crates.io

Detecting Cross-Language Memory Management Issues in Rust 3

– We propose an augmented abstract domain that captures the memory states
in the ownership-based memory management scheme.

– We design and build FFIChecker, an automated static analyzer that can
detect potential memory management bugs across the FFI boundaries in
Rust packages and report informative diagnostic messages. The source code
is available online4, which can be the basis of other research in the future.

– We perform extensive evaluations in the Rust ecosystem. We evaluate 987
packages crawled from the official package registry and detect 34 bugs among
12 packages. All the detected bugs have been manually confirmed and reported
to the authors and 15 of them have been fixed at the time of writing.

2 Background

In this section, we provide the background knowledge needed to understand the
rest of the paper. We first introduce the Rust programming language and its
security guarantees. Then we illustrate the prevalence of FFI and how Rust’s
memory management scheme interacts with it.

2.1 The Rust Programming Language

Rust is famous for its ability to build high-performance and secure programs. As
a strongly-typed and compiled language, its rigorous type system and the unique
ownership system enforce strict disciplines to eliminate memory safety issues. The
ownership system is an automated memory management strategy derived from
linear logic [13] and linear types [40]. Under the ownership system, each value
has a unique owner (called owner variable), which keeps track of the lifetime of
the value. Once the owner variable goes out of its scope, the ownership system
automatically releases the memory allocated for the value. Note that the scope
of each variable is determined at compile time so that the Rust compiler can
insert appropriate memory reclamation routines to the generated binary. Thus
neither reference counting nor garbage collection is needed. This enables Rust to
build fast programs since no runtime overhead is introduced.

To pass a value to other parts of code, one can either copy/clone, move, or
borrow the owner variable. Copying/cloning is usually used for data types that
have semantics where copying their bytes is a valid way of creating a real copy, e.g.,
basic data types like integers. For more complicated data types, especially those
that maintain internal heap memory (e.g., vectors), Rust’s assignments move the
ownership by default. After the ownership is moved, due to the uniqueness of
the owner, the previous owner is immediately invalidated. A value can also be
borrowed by taking a reference of it, through which the value can be temporarily
accessed without changing the ownership. The references can be either mutable
or immutable. The Rust type system regulates that there are no “mutable aliases”,
meaning that a read-only value can be immutably referenced multiple times;
when the value is writable, only one mutable reference is allowed at a time.
4 https://github.com/lizhuohua/rust-ffi-checker

https://github.com/lizhuohua/rust-ffi-checker

4 Z. Li, J. Wang, M. Sun, and J. Lui

The Rust compiler enforces the above rules to make security guarantees as
follows. On the one hand, since the ownership system keeps track of the lifetime
of each value, it ensures that the lifetime of a reference cannot exceed the value
it points to. Therefore memory safety issues caused by dangling pointers such as
use-after-free can be effectively prevented. On the other hand, since the ownership
system eliminates mutable aliases, many security issues caused by concurrent
reading/writing, such as race conditions and iterator invalidation, are avoided.

2.2 Foreign Function Interface (FFI) and Memory Management

As a system-level programming language, Rust can easily collaborate with other
languages through the Foreign Function Interface (FFI). In this paper, we consider
the case where the external code is written in C/C++ since this is the most
common usage of FFI. Integrating Rust code with C/C++ code is prevalent
and necessary because (1) Many C/C++ projects integrate Rust into existing
codebases (e.g., the Linux kernel and Firefox) to enhance their security. (2) It can
avoid duplicated work and benefit from the rich ecosystem of libraries written in
C/C++. (3) C/C++ can be used for performance-critical scenarios.

However, since the Rust compiler cannot reason about the security of external
code, calling FFI is inherently unsafe. Programmers need to explicitly use the
unsafe keyword to bypass the security check enforced by the compiler. Therefore,
using FFI is extremely error-prone. Existing studies [12,41,24] have shown that
the incorrect use of FFI has become a severe source of memory safety bugs.

We would like to point out that even if programmers restrict themselves
in pure safe Rust, their programs may still implicitly rely on FFI through
dependencies. In fact, we find that more than 72% of packages on the official
Rust package registry (crates.io) depend on at least one unsafe FFI-bindings
package, as shown in Figure 1. The data is crawled by reading the metadata of
reverse dependencies5 on crates.io. Among all the 76, 894 packages, we start from
all the packages that are of category “external-ffi-bindings” (900 packages). These
packages contain direct Rust FFI bindings to libraries written in other languages,
often denoted by a “-sys” suffix. Then we collect all the reverse dependencies of
them and repeat this process to get multi-level dependencies. As a result, the
number of packages converges at the 10th level, with a total of 55, 762 packages
(55, 762/76, 894 ≈ 72.52%). Note that the “external-ffi-bindings” category by no
means includes all the FFI binding libraries since many packages’ categories are
not tagged properly, hence the actual percentage can only be higher.

Since the manual memory management in C/C++ is naively unsafe, in this
paper, we only consider the case where the heap memory is allocated in Rust and
passed to C/C++. There are two ways of passing a heap-allocated object across
FFI: (1) by borrowing the object as a reference, (2) by moving the ownership to
the FFI. For borrowing as a reference, the ownership remains on the Rust side, so
the ownership system is responsible for releasing the memory after it goes out of
its scope. For moving the ownership, one can first “forget” it from the ownership
5 As of February 14, 2022.

crates.io
crates.io

Detecting Cross-Language Memory Management Issues in Rust 5

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9
×104

Total number of packages: 76,894

Dependency Levels

N
um

be
r
of

P
ac
ka
ge
s

Fig. 1. Number of packages that depend on unsafe FFI.

system, then pass it to the FFI via a raw pointer. The Rust standard library
provides several functions to “forget” an object, e.g., std::mem::forget and
Box::into_raw. In this case, the responsibility of memory management returns
back to the programmers, who have to take extra care because the ownership
system no longer takes charge.

3 Security & Memory Management Issues via FFI

To explain why the memory management across the FFI boundaries may lead
to security vulnerabilities and how the Rust ownership system gets involved,
we give several bug examples detected by FFIChecker. We also categorize the
vulnerabilities caused based on our observations: (1) common memory corruption,
(2) exception safety, and (3) undefined behavior caused by mixing memory
management mechanisms.

3.1 Memory Corruption

When heap memory is passed across the FFI boundaries, the ownership system
cannot guarantee its safety. Therefore the responsibility of memory management
returns back to the programmers, meaning that all kinds of common memory
corruption bugs that happen in C, like use-after-free, double free, and memory
leak, still exist. Listing 1 shows a memory leak found in package emd6. In Rust,
Box is a smart pointer type used to securely manage heap memory. The developer
uses Box::into_raw to expose the raw pointer of the heap memory managed
by the Box in order to pass it to the FFI. However, after using Box::into_raw,
the ownership system will “forget” the memory and hence will not automatically
reclaim it. Instead, the developer is responsible for releasing the memory previously
managed by the Box. Otherwise, there will be a memory leak.
6 https://crates.io/crates/emd

https://crates.io/crates/emd

6 Z. Li, J. Wang, M. Sun, and J. Lui

1 let mut cost = Vec::with_capacity(X.rows());
2 for x in X.outer_iter() {
3 let mut cost_i = Vec::with_capacity(Y.rows()); // Allocate a vector
4 for y in Y.outer_iter() {
5 cost_i.push(distance(&x, &y) as c_double);
6 }
7 // Forget the memory using `Box::into_raw`
8 cost.push(Box::into_raw(cost_i.into_boxed_slice()) as *const c_double);
9 }

10

11 // Call FFI function
12 let d = unsafe { emd(X.rows(), weight_x.as_ptr(), Y.rows(), weight_y.as_ptr(), cost.as_ptr(),

null()) };↪→

Listing 1: Box::into_raw leaks memory but it is not released by the developer.

3.2 Exception Safety

Unlike many other programming languages, Rust does not support the try-catch
statement for catching “exceptions”. Instead, Rust provides a more reliable error
handling mechanism: All recoverable errors must be handled or propagated back
to the caller function, and all unrecoverable errors are handled by terminating
the execution and unwinding the stack. All the stack objects’ destructors will be
called during the stack unwinding to prevent resource leakage. However, when
passing heap memory across the FFI boundaries and cooperating with external
code, developers usually have to transiently create unsound states via unsafe
code (e.g., creating temporarily uninitialized data). Then after the external
code finishes, developers manually clean up the states. If some error happens in
between, the execution stops and the stack is unwound, so the clean-up procedure
will not be executed. The remaining unsound state may cause security issues.

Listing 2 gives an example found in package libtaos7. At line 2, variable
params is initialized by allocating heap memory. The memory is passed to FFI in
the following unsafe block in lines 3 – 8. Note that the question mark operator
(?) at lines 5 and 7 means that if the operation fails, the function returns early
and propagates the error to the caller function. Therefore, the memory may be
leaked if the function returns early and hence the free function at line 10 will
not be called.

3.3 Mixing Memory Management Mechanisms

It is common that some C libraries provide functions for constructing/destructing
data structures (usually implemented through malloc and free). To reuse these
libraries, Rust developers usually implement Rust wrappers to handle these
C APIs. One possible error is mixing different memory allocation/deallocation
procedures provided by different languages. For example, it is illegal to allocate
memory on the Rust side using Box and release it on the C side using free.
Mixing different memory management mechanisms is undefined behavior, because
7 https://crates.io/crates/libtaos

https://crates.io/crates/libtaos

Detecting Cross-Language Memory Management Issues in Rust 7

1 pub fn bind(&mut self, params: impl IntoParams) -> Result<(), TaosError> {
2 let params = params.into_params();
3 unsafe {
4 let res = taos_stmt_bind_param(self.stmt, params.as_ptr() as _);
5 self.err_or(res)?;
6 let res = taos_stmt_add_batch(self.stmt);
7 self.err_or(res)?;
8 }
9 for mut param in params {

10 unsafe { param.free() };
11 }
12 Ok(())
13 }

Listing 2: When errors happen, bind returns before calling free.

(1) Rust and C may use different memory allocators. (E.g., on Linux, Rust can be
configured to use jemalloc, while C uses ptmalloc by default.) (2) Rust and C have
totally different memory management mechanisms and they operate on different
levels. Specifically, Rust calls the constructors/destructors for constructed objects
while C only deals with raw memory.

Listing 3 shows an example of mixing the memory management mechanisms
of Rust and C, found in package jyt8. At line 5, a string is constructed through
CString::new, which internally allocates memory on the heap using Rust’s own
memory allocator. Then at line 7, the string is explicitly leaked by mem::forget,
and a raw pointer that points to the string is returned (line 8). Finally, at line 16,
the heap memory is freed by the standard C function free. Note that the heap
memory is obtained through Rust’s allocator but freed on the C side through
function free. This may lead to allocator corruption since the Rust code is
compiled as a library and may be used in multiple projects with different memory
allocators. Even if this may “work” in practice, it is undefined behavior and hence
it is not guaranteed to work on other machines or on newer compilers.

3.4 Our Methodology

Based on the above motivating examples, we propose to use static analysis to
detect these bugs because static analysis can examine every control flow path in
a program and catch all potential bugs. It is especially appropriate for catching
defects in exceptional situations because they are hard to be triggered with
normal execution paths. At a high level, our approach does the following: We
first compile both the Rust and C/C++ code into LLVM IR. Then we perform
static analysis on the LLVM IR and keep track of the states of all the heap
memory allocations, i.e., while the heap memory is propagated among the control
flow graph, we determine whether it is borrowed or moved. Finally, if any heap
memory is passed across the FFI boundaries, we continue to analyze whether it
is freed in the external code. Depending on its state, we can find out whether the
memory is incorrectly managed and generate diagnostic messages accordingly.
8 https://crates.io/crates/jyt

https://crates.io/crates/jyt

8 Z. Li, J. Wang, M. Sun, and J. Lui

1 // Rust code:
2 pub unsafe extern "C" fn to_json(from: ext::Ext, text: *const c_char) -> *const c_char {
3
4 // CString internally allocates heap memory
5 let output = CString::new(ext::json::serialize(&value.unwrap()).unwrap()).unwrap();
6 let ptr = output.as_ptr();
7 mem::forget(output); // Memory is "forgotten" by the ownership system
8 ptr // The raw pointer will be passed across the FFI boundary
9 }

10

11 // C code:
12 int main() {
13
14 const char* output = to_json(Yaml, input);
15
16 free((char*)output); // Memory allocated in Rust is freed by free()
17 return 0;
18 }

Listing 3: Memory allocated on the Rust side but is freed on the C side.

4 System Design

In this section, we show the high-level architecture of FFIChecker and elaborate
on the functionality of each component. The workflow of FFIChecker is depicted
in Figure 2. The whole system consists of three parts: (1) the user interface and
the driver program, (2) the entry point and foreign function collector, and (3)
the static analyzer and bug detector.

Fig. 2. The architecture of FFIChecker.

Detecting Cross-Language Memory Management Issues in Rust 9

4.1 User Interface

The goal of the user interface is to get a Rust package being analyzed from the
user and prepare all the ingredients that the static analyzer requires, such as the
LLVM bitcode and a set of appropriate entry points. Then it works as a driver
program that delegates the remaining procedures to other components. The user
interface takes a Rust package as input, which contains one or many Rust crates
and C/C++ source files (if they exist). A crate is a unit of compilation and
linking for the Rust compiler. It contains one or many Rust source files and may
depend on other crates. We leverage the official build system Cargo to resolve
dependencies and download all the dependent crates. Then different source files
are dispatched to either the Rust compiler or the C/C++ compiler, and both
the compilers are configured to generate LLVM bitcode. The Cargo integration
provides a user-friendly interface similar to many existing tools used by Rust
developers, such as Clippy, so that users can easily integrate FFIChecker into
their daily development workflow.

4.2 Entry Point and Foreign Function Collection

Performing static analysis requires an appropriate function as the entry point. We
focus on public functions/methods for a Rust program because they are visible
to attackers and hence may be exploited. Also, since we care about the cross-
language scenario, we want to distinguish whether a function is written in Rust
or C/C++. The entry point/foreign function collector is designed to collect all of
the information we need. Specifically, after the user interface downloads all the
dependencies, the collector is invoked to process each of these crates and collects:
(1) a list of public functions/methods, and (2) a list of C/C++ functions called in
the Rust program. The collector is implemented as a customized callback function
of the Rust compiler, so that it can access the internal data structures inside the
compiler. It first goes through the Rust High-level Intermediate Representation
(HIR) generated by the Rust compiler, which contains required information
such as the function names, visibility, and whether it is implemented in Rust or
C/C++. Then it extracts the required function names and passes them to the
static analyzer.

4.3 Static Analysis and Bug Detection

The LLVM bitcode, entry points, and foreign functions are sent to the static
analyzer as input. The static analyzer performs analysis by traversing the control
flow graph (CFG) provided by the LLVM bitcode. The details of the algorithms
will be discussed in Section 6. Once the static analysis finishes, a bug detection
module reads the analysis results and generates diagnostic messages. The messages
are filtered by user-specified rules in order to suppress false positives, and then
printed to users (§ 6.3). According to the diagnostic messages, users can manually
inspect the source code and pinpoint potential bugs in their programs.

10 Z. Li, J. Wang, M. Sun, and J. Lui

5 Abstract Interpretation

In this section, we present the definition of our abstract domain and transfer
functions based on the language model of LLVM IR.

5.1 LLVM IR, Abstract Values and Abstract Domain

In LLVM IR, a single function is modeled as a Control Flow Graph (CFG), where
each node is a basic block containing one or more instructions without any jumps.
At the end of each basic block, there is one terminator, a special instruction
representing a jump among the control flow. Static analysis models the program
execution in a certain abstract domain, and each element of the domain represents
a certain execution state, which is referred to as an abstract state. It first assigns
abstract states to each variable and basic block, then traverses the CFG and
updates these states according to the semantics of each instruction. The abstract
domain varies depending on different purposes. We design our abstract domain
as follows in order to capture the ownership state of heap memory. Note that our
design is derived from the classical Abstract Interpretation literature [26,29].

For each CFG, we denote the set of all the variables that appear in the CFG
as Var, and the set of all basic blocks in the CFG as Block. To distinguish
whether a variable stores heap memory and its state in the ownership system
(e.g., whether it is borrowed or moved), we define the state MState as a lattice
with 5 elements, a partial ordering relation v and a join operator t, as shown in
Figure 3. Intuitively, the bottom element (⊥) is the default value for all variables.
When a variable is initialized by a heap memory allocation procedure, we mark
it as Alloc. Note that a heap memory can be passed to FFI by either taking a
reference (borrow) or forgetting its ownership (move). We distinguish them by
the corresponding states Borrowed and Moved. To be conservative, when the
state cannot be determined, we set it as the top element (>).

>

Borrowed Moved

Alloc

⊥

Fig. 3. MState lattice used by FFIChecker.

To keep track of the abstract values for each basic block, we maintain a lookup
table σb : Var→MState for each basic block b. The abstract state AState is
defined as a map lattice consisting of all the mappings from Var to MState.

Detecting Cross-Language Memory Management Issues in Rust 11

Intuitively, an element in AState is a lookup table, which depicts the abstract
memory state for each variable after executing the current basic block of the
program. AState is still a lattice and the partial ordering is defined as:

For σ1, σ2 ∈ AState, σ1 v σ2 ⇐⇒ ∀a ∈ Var, f(a) v g(a).
And the t operator is defined pointwise in terms of the operators from MState:

∀σ1, σ2 ∈ AState, σ1 t σ2 = {(a, σ1(a) t σ2(a)) : ∀a ∈ Var} .

Finally, the abstract domain is defined as a mapping from all basic blocks
Block to AState. Equivalently, it is defined as the powerset of AState, i.e.,
Domain = 2AState.

5.2 Transfer Functions

In static analysis, transfer functions are used to extract information from the
program semantics and update the abstract states. Since FFIChecker runs on
LLVM IR, we assign a transfer function to each LLVM instruction according to
its semantics. Specifically, we focus on the following instructions: (1) Instructions
that affect the data flow such as load, store, and GetElementPtr, because
we need to propagation the abstract states. (2) Instructions that call other
functions, such as Call and Invoke, through which we perform context-sensitive
interprocedural analysis (§ 6.2). For details, please refer to our implementation.

6 Algorithms

In this section, we present the main algorithms used in FFIChecker. The
algorithms consist of three parts: (1) A fixed-point algorithm that traverses
a CFG and executes transfer functions until a fixed point is reached. (2) An
algorithm that achieves context-sensitive interprocedural analysis. (3) A bug
detection algorithm used to determine whether there are any potential bugs.

6.1 Fixed-Point Algorithm

Similar to most static analysis tools, FFIChecker traverses a given CFG
and iteratively runs transfer functions to update the abstract state until it
reaches a fixed point. The fixed-point algorithm is formulated in the Appendix
(Algorithm 1). We implement the classical worklist algorithm [26,29], where the
worklist W is a set initialized to contain all the basic blocks in the CFG. Then
the algorithm chooses a basic block b from W and analyzes it by executing the
transfer functions of its instructions. The state is updated by joining the states
of all the predecessors of b. If the state changes, all the successors of b will be
inserted into the worklist, waiting for a re-analysis. This procedure is repeated
until the worklist W becomes empty. The algorithm terminates because either
the state goes “up” in the lattice (because of the join operator), or the length of
W decreases. Since the lattice we defined has finite height, W will eventually be
depleted.

12 Z. Li, J. Wang, M. Sun, and J. Lui

6.2 Analyzing Function Calls

When analyzing instructions that call other functions, such as Call and Invoke,
FFIChecker performs interprocedural analysis. Different functions need different
treatments, therefore we categorize functions into different types: (1) Functions
that allocate heap memory, e.g., exchange_malloc. These are the “taint sources”
of our algorithm, indicating that the resulting variable stores heap memory, so
we can mark its abstract state into Alloc. (2) Functions that borrow a reference
(e.g., Vec::as_mut_ptr) or move the ownership (e.g., Box::into_raw). These
functions change the abstract state of heap memory into either Borrowed or
Moved. (3) Foreign functions called through FFI. These are the potentially
vulnerable functions that FFIChecker cares about. FFIChecker will analyze
these functions and see whether there are any bugs (§ 6.3). (4) LLVM intrinsic
functions and the Rust standard library functions. The former are implemented
by the compiler backend so their implementations do not even exist in LLVM IR.
The latter are commonly used but usually hard to be analyzed because of their
complexity and heavy abstraction. These functions are also not FFIChecker’s
targets because our goal is to find bugs in third-party libraries instead of in
the Rust compiler or the standard library. Therefore, we provide some special
handlers that work as the model of these functions by resembling their behaviors.
FFIChecker internally maintains a map between such functions and their
handlers, and will execute the handler instead of launching a new function
analysis. (4) For all other functions, FFIChecker launches context-sensitive
interprocedural analysis by initializing a new fixed-point algorithm instance for
this function. The algorithm is formulated in the Appendix (Algorithm 2).

6.3 Bug Detection and False Positive Suppression

After the fixed-point algorithm terminates, FFIChecker checks whether there
are any variables that store heap memory but are passed to FFI. If this is the
case, some heap memory leaks into the external code, which may lead to potential
vulnerabilities. To further determine the bug type, FFIChecker launches a new
function analysis instance for all foreign functions to which some heap memory is
passed, and checks whether the heap memory is freed or not in the external code.
Then it generates warnings according to the ownership state of the heap memory.
For example, suppose a variable is moved across FFI by Rust and freed in C. In
that case, this is an undefined behavior caused by mixing memory management
mechanisms (§ 3.3). The rules of warning generation are summarized in Table 1.

As shown in the table, we also tag a confidence level on each generated
warning depending on how much information we can leverage during the analysis.
For example, the LLVM IR of a foreign function is not always available because it
may come from a dynamically linked C library. Or it may be called via a function
pointer, so FFIChecker cannot statically know which function is called. In this
case, FFIChecker cannot further analyze the foreign function, so it generates
warnings with lower confidence. This design helps us to suppress false alarms.
We implement a precision filter to determine what level of warning messages

Detecting Cross-Language Memory Management Issues in Rust 13

is reported to users. Only warnings with a confidence level higher than the
filter’s threshold will be issued. Users can pass command-line options to the user
interface to override the default filter configuration.

Table 1. Rules of warning generation. The reported warnings include use-after-free
(UAF), double free (DF), undefined behavior (UB), and memory leak (LEAK). SAFE
means no warning is issued. The confidence levels (high, medium, or low) are enclosed
in parentheses.

C Code is Unavailable C Code is Available

Freed Not Freed

Borrowed UAF/DF (Low) UAF/DF (High) SAFE
Moved UB/LEAK (Mid) UB (High) LEAK (Mid)

7 Implementation

FFIChecker is written in Rust (2, 468 lines of code) and has three binaries, which
are the user interface, entry point/foreign function collector, and static analyzer.
The user interface is implemented as a cargo sub-command, which tightly
integrates with the official build system. Users can easily integrate FFIChecker
in their daily workflow and check their packages by a single command: cargo
ffi-checker. The entry point/foreign function collector is implemented as a
customized Rust compiler, in which we insert the collector routine as a callback
function. The callback function is invoked automatically after the compiler
gathers all the information of the source code. Thus it can access the internal
compiler data structures such as HIR. The static analyzer is a standalone binary
configurable through the user interface. Users can specify the precision filter,
which determines whether to issue a warning message according to its priority.
We also provide several Python scripts for downloading packages on the official
package registry and running evaluations.

8 Evaluation

In order to evaluate FFIChecker in terms of its effectiveness and performance,
we collect Rust packages as test cases on the official package registry crates.io.
Since we care about the cross-language scenario and focus on external code written
in C/C++, we only crawl packages that heavily use the FFI between Rust and
C/C++. Specifically, we download packages that are of category “external-ffi-
bindings”, or depend on other packages that assist the use of FFI, such as cc,
bindgen, or cbindgen. Finally, we collect a total of 987 packages as our analysis
targets, which contain 3, 232, 574 lines of Rust and 46, 321, 573 lines of C/C++.

All the experiments were done on a machine with a 3.70 GHz Intel Xeon
E5-1630 v4 CPU and 16GB RAM, running Gentoo Linux (kernel 5.15.32).

crates.io

14 Z. Li, J. Wang, M. Sun, and J. Lui

8.1 Effectiveness and Performance of FFIChecker

We run FFIChecker on our dataset, and it generates 222 warnings. Then
we manually inspect the output at a rate of about 100 reports per person-
hour. Finally, 34 bugs (19 memory leaks, 3 exception-related bugs, 12 undefined
behaviors) in 12 packages are confirmed. The statistical details are listed in
Table 2, where columns “# of Bugs” and “Reports” show the number of true
positives we confirmed and the number of warnings in the emitted diagnostic
messages with different confidence levels. We have reported all the bugs to the
package maintainers. At the time of writing, 15 bugs were confirmed and fixed.
For more details, we refer readers to our GitHub repository9.

We further measure the execution time and memory usage of FFIChecker
for all the 987 packages. We run the evaluation in 8 parallel threads, and FFI-
Checker can finish all the analysis in 5.2 hours with at most 4.1 GB memory
consumption. On average, FFIChecker can analyze a package in 116.9 CPU
seconds with 1, 056.6 MB memory consumption. Note that the execution time
and memory usage do not correlate to the lines of code or the number of inter-
faces, because the convergence of the fixed-point algorithm mainly depends on
the structure of the CFG. Overall, FFIChecker is scalable enough to analyze
real-world Rust packages with a reasonable amount of computational resources.

Table 2. Bugs detected by FFIChecker. The types of bugs include memory leak
(LEAK), exception safety (EXC), and undefined behavior (UB). “N/A” means that the
foreign functions are from shared libraries instead of the Rust package.

Package # of
Bugs

Reports Bug Type Elapsed
Time (s)

Memory
Usage (MB)

of
Entries

of
FFIs

LoC

High Mid Low Rust C/C++

arma-rs 3 0 1 0 LEAK 38.67 1040.85 29 4 1686 N/A
cobyla 1 0 1 0 LEAK 48.14 1979.54 2 1 225 1635
emd 1 0 1 0 LEAK 7.21 237.75 4 1 87 541
impersonate 1 0 1 0 LEAK 19.11 767.54 6 1 117 61
iredismodule 11 0 0 10 EXC, LEAK 78.15 1958.46 364 230 3761 777
jyt 6 0 0 1 UB 97.25 2711.75 3 6 450 N/A
liboj 1 0 0 3 LEAK 108.58 3109.21 86 38 1342 N/A
libtaos 1 0 0 1 EXC 99.23 1724.13 461 50 5491 N/A
moonfire-ffmpeg 1 0 0 1 UB 7.83 228.78 53 92 1513 231
pdb_wrapper 1 0 0 1 EXC 68.04 2530.41 20 14 499 375
snap7-rs 2 0 1 4 LEAK 8.97 203.77 387 276 6110 14085
triangle-rs 5 0 1 0 UB 47.46 1095.58 34 2 681 15050

8.2 Understanding False Positives and False Negatives

FFIChecker reports numbers of false positives. After inspecting the reported
warnings, we summarize two reasons that lead to the false alarms: (1) It is
common that Rust calls foreign functions from dynamically linked shared li-
braries. Therefore the LLVM IR of the foreign code is not available. In this
case, FFIChecker cannot further analyze the foreign function, so it generates
9 https://github.com/lizhuohua/rust-ffi-checker/tree/master/trophy-case

https://github.com/lizhuohua/rust-ffi-checker/tree/master/trophy-case

Detecting Cross-Language Memory Management Issues in Rust 15

imprecise results. (2) FFIChecker cannot always distinguish whether a variable
is borrowed or moved via LLVM IR because the borrowing/moving operations
may be optimized away by the Rust compiler.

During the manual inspection, we also observe some bugs in functions with
generic type parameters but they are not reported by FFIChecker. The reason
is that the Rust compiler will not generate code for generic functions unless they
are monomorphized, meaning that FFIChecker cannot find the LLVM IR for
generic functions that are only implemented in the package but not used.

Nevertheless, as presented in Section 6.3, FFIChecker generates warnings
with different confidence levels. Users can configure the precision filter through
command-line options to only output warnings with high confidence. Even if all
the warnings are issued, users can still filter out false alarms quickly during the
manual inspection with the help of the confidence levels attached to them.

9 Discussion

Thoughts about Rust’s security guarantees. As shown in Table 2, most bugs
we found are memory leaks. We interpret this as a limitation of Rust’s security
guarantees: memory leak is considered safe in Rust [16]. The reason behind this
design choice is that leaking resources is possible in pure safe Rust (consider
creating a cycle of reference-counted pointers using interior mutability). Therefore,
the authors of the Rust standard library decide not to mark functions that leak
memory as unsafe, such as mem::forget. As a result, the Rust compiler will not
give any warnings when inexperienced programmers misuse these functions and
cause memory leaks, leading to denial of service attacks or information leakage.

Future work. Although we focus on Rust combined with C/C++, the idea of
FFIChecker and the threat model can be extended to other cross-language
scenarios. Especially, the static analyzer is designed to be an individual binary
that operates on LLVM IR. Therefore by changing the Rust-specific part of the
system, our approach can be adapted to analyze other FFIs, as long as they
support the LLVM backend for code generation, e.g., languages such as Haskell,
Julia, and Swift.

10 Related Work

10.1 Static Analysis for Rust

Many existing studies extend off-the-shelf static analysis engines to perform bug
detection on LLVM IR generated by the Rust compiler. Lindner et al. [23] use the
symbolic execution engine KLEE [5] to verify whether a program is panic-free.
SMACK [32,3] translates LLVM IR into the Boogie intermediate verification
language [11]. Rust2Viper [14] and Prusti [1] utilize user-provided specifications
and the Viper [28] symbolic execution engine to verify functional correctness

16 Z. Li, J. Wang, M. Sun, and J. Lui

properties. CRUST [38] translates functions that contain unsafe code to C, then
it generates tests and checks them by the CBMC [6] model checker.

There are also many tools that work on Rust’s own intermediate representa-
tion. Qin et al. [31] build two bug detectors for use-after-free and double-lock
bugs according to their empirical studies on Rust security issues. SafeDrop [10]
focuses on the deallocation of heap memory and detects memory corruptions by
performing alias analysis and taint analysis on Rust MIR. MIRAI [25] is a formal
verification tool that performs symbolic execution on Rust MIR. It enables users
to add annotations and utilizes the SMT solver Z3 [27] to prove the correctness
of Rust programs. MirChecker [22] collects both the numerical and symbolic
information from Rust MIR, and detects runtime panics and memory-safety
issues without the need for annotations. Rudra [2] uses both Rust MIR and HIR,
and detects potential memory safety bugs in unsafe Rust.

10.2 Cross-Language Bug Detection and Prevention

It is well-known that developing software using multiple languages may interfere
with each other and lead to subtle bugs. Mergendahl et al. [24] propose a threat
model to reason about cross-language attacks. They also demonstrate these
attacks on Rust and Go. Kondoh et al. [17] use static analysis to detect common
mistakes and bad programming practices when using Java Native Interface (JNI).
Tan et al. [35] apply static analysis and carry out an empirical security study on
a portion of the native code in Sun’s Java Development Kit (JDK). JET [20,19]
is a static analysis tool that enforces exception checking and reports bugs on
Java exceptions raised in native code through JNI. Jinn [18] is a compiler and
virtual machine independent bug detection tool for both JNI and Python/C.
Galeed [33] and PKRU-Safe [15] isolate heap memory at runtime using Intel
Memory Protection Keys (MPK), such that unsafe (external) code cannot corrupt
memory used exclusively by the safe-language components.

Unlike these existing efforts, our work focuses on the memory management
issues between Rust and C/C++. The new pattern of bugs introduced by the
interaction between the Rust ownership system and C/C++ is out of the scope
of all the existing detection or prevention efforts.

11 Conclusion

Rust leverages FFI to invoke external C/C++ code, making incremental software
development convenient and efficient. In this paper, we showed that there could
be security issues since programmers may make mistakes when using FFI. To
secure the use of FFI, we designed and implemented FFIChecker, an automated
static analysis tool based on augmented taint analysis, which captures the state
transitions of heap allocations when they are passed to external code through FFI.
It can detect potential memory management issues across the FFI boundaries. We
evaluated it by analyzing 987 real-world Rust packages. It successfully revealed
34 bugs in 12 packages that were unknown previously. Finally, we open-sourced
FFIChecker with various examples and test scripts.

Detecting Cross-Language Memory Management Issues in Rust 17

Acknowledgments The work of Zhuohua Li, Jincheng Wang, and John C.S.
Lui were supported in part by the RGC’s RIF R4032-18.

References

1. Astrauskas, V., Müller, P., Poli, F., Summers, A.J.: Leveraging Rust Types for
Modular Specification and Verification. Proceedings of the ACM on Programming
Languages 3(OOPSLA), 1–30 (2019)

2. Bae, Y., Kim, Y., Askar, A., Lim, J., Kim, T.: Rudra: Finding Memory Safety
Bugs in Rust at the Ecosystem Scale. In: Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles. p. 84–99. SOSP ’21 (2021)

3. Baranowski, M., He, S., Rakamaric, Z.: Verifying Rust Programs with SMACK. In:
Proceedings of the 16th International Symposium on Automated Technology for
Verification and Analysis. pp. 528–535. ATVA ’18 (2018)

4. Bushev, D.: Language details of the Firefox repo (2022), https://4e6.github.io/
firefox-lang-stats/

5. Cadar, C., Dunbar, D., Engler, D.: KLEE: Unassisted and Automatic Generation
of High-Coverage Tests for Complex Systems Programs. In: Proceedings of the
8th USENIX Conference on Operating Systems Design and Implementation. pp.
209–224. OSDI ’08 (2008)

6. Clarke, E., Kroening, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In:
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems. pp. 168–176. TACAS ’04 (2004)

7. Cousot, P., Cousot, R.: Static Determination of Dynamic Properties of Programs.
In: Proceedings of the 2nd International Symposium on Programming. pp. 106–130.
ISOP ’76 (1976)

8. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In:
Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages. pp. 238–252. POPL ’77 (1977)

9. Cousot, P., Cousot, R.: Systematic Design of Program Analysis Frameworks. In:
Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages. pp. 269–282. POPL ’79 (1979)

10. Cui, M., Chen, C., Xu, H., Zhou, Y.: SafeDrop: Detecting Memory Deallocation
Bugs of Rust Programs via Static Data-Flow Analysis (2021)

11. DeLine, R., Leino, R.: BoogiePL: A Typed Procedural Language for Checking
Object-Oriented Programs. Tech. Rep. MSR-TR-2005-70 (2005)

12. Evans, A.N., Campbell, B., Soffa, M.L.: Is Rust Used Safely by Software Developers?
In: Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering. pp. 246–257. ICSE ’20 (2020)

13. Girard, J.Y.: Linear Logic: Its Syntax and Semantics. In: Proceedings of the
Workshop on Advances in Linear Logic. pp. 1–42 (1995)

14. Hahn, F.: Rust2Viper: Building a Static Verifier for Rust. Master’s thesis, ETH
Zürich (2016)

15. Kirth, P., Dickerson, M., Crane, S., Larsen, P., Dabrowski, A., Gens, D., Na, Y.,
Volckaert, S., Franz, M.: Pkru-safe: Automatically locking down the heap between
safe and unsafe languages. In: Proceedings of the Seventeenth European Conference
on Computer Systems. p. 132–148. EuroSys ’22 (2022)

https://4e6.github.io/firefox-lang-stats/
https://4e6.github.io/firefox-lang-stats/

18 Z. Li, J. Wang, M. Sun, and J. Lui

16. Klabnik, S., Nichols, C.: The Rust Programming Language. No Starch Press, USA
(2018)

17. Kondoh, G., Onodera, T.: Finding Bugs in Java Native Interface Programs. In:
Proceedings of the 2008 International Symposium on Software Testing and Analysis.
p. 109–118. ISSTA ’08 (2008)

18. Lee, B., Wiedermann, B., Hirzel, M., Grimm, R., McKinley, K.S.: Jinn: Synthesizing
Dynamic Bug Detectors for Foreign Language Interfaces. In: Proceedings of the 31st
ACM SIGPLAN Conference on Programming Language Design and Implementation.
p. 36–49. PLDI ’10 (2010)

19. Li, S., Tan, G.: Finding Bugs in Exceptional Situations of JNI Programs. In:
Proceedings of the 16th ACM Conference on Computer and Communications
Security. p. 442–452. CCS ’09 (2009)

20. Li, S., Tan, G.: JET: Exception Checking in the Java Native Interface. In: Proceed-
ings of the 2011 ACM International Conference on Object Oriented Programming
Systems Languages and Applications. p. 345–358. OOPSLA ’11 (2011)

21. Li, Z., Wang, J., Sun, M., Lui, J.C.: Securing the Device Drivers of Your Embedded
Systems: Framework and Prototype. In: Proceedings of the 14th International
Conference on Availability, Reliability and Security. pp. 1–10. ARES ’19 (2019)

22. Li, Z., Wang, J., Sun, M., Lui, J.C.: MirChecker: Detecting Bugs in Rust Programs
via Static Analysis. In: Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security. p. 2183–2196. CCS ’21 (2021)

23. Lindner, M., Aparicius, J., Lindgren, P.: No Panic! Verification of Rust Programs
by Symbolic Execution. In: 2018 IEEE 16th International Conference on Industrial
Informatics. pp. 108–114. INDIN ’18 (2018)

24. Mergendahl, S., Burow, N., Okhravi, H.: Cross-Language Attacks. In: Proceedings
of the Network and Distributed System Security Symposium (NDSS’22) (2022)

25. MIRAI Contributors: MIRAI: Rust mid-level IR Abstract Interpreter (2022), https:
//github.com/facebookexperimental/MIRAI

26. Møller, A., Schwartzbach, M.I.: Static Program Analysis (2018)
27. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Tools and Algorithms

for the Construction and Analysis of Systems. pp. 337–340. TACAS ’08 (2008)
28. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: A Verification Infrastructure for

Permission-Based Reasoning. In: Proceedings of the 17th International Conference
on Verification, Model Checking, and Abstract Interpretation - Volume 9583. pp.
41–62. VMCAI ’16 (2016)

29. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer
Publishing Company, Incorporated (2010)

30. Ojeda, M.: Rust for Linux (2022), https://github.com/Rust-for-Linux
31. Qin, B., Chen, Y., Yu, Z., Song, L., Zhang, Y.: Understanding Memory and Thread

Safety Practices and Issues in Real-World Rust Programs. In: Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implementation.
pp. 763–779. PLDI ’20 (2020)

32. Rakamaric, Z., Emmi, M.: SMACK: Decoupling Source Language Details from
Verifier Implementations. In: Proceedings of the 26th International Conference on
Computer Aided Verification. pp. 106–113. CAV ’14 (2014)

33. Rivera, E., Mergendahl, S., Shrobe, H., Okhravi, H., Burow, N.: Keeping safe
rust safe with galeed. In: Annual Computer Security Applications Conference. p.
824–836. ACSAC ’21 (2021)

34. Secure Rust Guidelines Contributors: Secure Rust Guidelines (2022), https://
anssi-fr.github.io/rust-guide/

https://github.com/facebookexperimental/MIRAI
https://github.com/facebookexperimental/MIRAI
https://github.com/Rust-for-Linux
https://anssi-fr.github.io/rust-guide/
https://anssi-fr.github.io/rust-guide/

Detecting Cross-Language Memory Management Issues in Rust 19

35. Tan, G., Croft, J.: An Empirical Security Study of the Native Code in the JDK. In:
17th USENIX Security Symposium (USENIX Security 08) (Jul 2008)

36. The Rust FFI Omnibus Contributors: The Rust FFI Omnibus (2022), http://
jakegoulding.com/rust-ffi-omnibus/

37. The Rustonomicon Contributors: The Rustonomicon (2022), https://doc.rust-lang.
org/nomicon/

38. Toman, J., Pernsteiner, S., Torlak, E.: Crust: A Bounded Verifier for Rust. In: 2015
30th IEEE/ACM International Conference on Automated Software Engineering.
pp. 75–80. ASE ’15 (2015)

39. Unsafe Code Guidelines Working Group: Rust’s Unsafe Code Guidelines Reference
(2022), https://rust-lang.github.io/unsafe-code-guidelines/

40. Wadler, P.: Linear Types Can Change the World! In: Programming Concepts and
Methods (1990)

41. Xu, H., Chen, Z., Sun, M., Zhou, Y., Lyu, M.R.: Memory-Safety Challenge Con-
sidered Solved? An In-Depth Study with All Rust CVEs. ACM Transactions on
Software Engineering and Methodology 31(1) (sep 2021)

Appendix
A Fixed-Point Algorithm

Algorithm 1: Fixed-point algorithm for FFIChecker
Input: Control Flow Graph: CFG
Output: Abstract State: State
Initialization: State[n]← ⊥ for all n

1 Function FixedPoint(CFG, State):
2 W ← CFG.basicblocks
3 while W 6= ∅ do
4 b←W.remove()
5 foreach instr ∈ b.instructions do
6 Transfer(State[b], instr)
7 Transfer(State[b], b.terminator)
8 new_state←

⊔
n∈Predecessors(b) State[n]

9 if new_state 6v State[b] then
10 State[b]← new_state
11 foreach v ∈ Successors(b) do
12 W.insert(v)
13 return State

B Context-Sensitive Interprocedural Analysis

To avoid duplicated analysis for the same function, we also implement the
classical summary-based method [26,29]. It caches previously computed results
(i.e., summaries) in a lookup table cache : ((f, in_state), out_state) that maps a
calling context (f, in_state) to an output out_state. (f is a function, in_state
is the abstract state of its input, and out_state is the corresponding output.)
Before analyzing a function, we first check whether there is an existing summary

http://jakegoulding.com/rust-ffi-omnibus/
http://jakegoulding.com/rust-ffi-omnibus/
https://doc.rust-lang.org/nomicon/
https://doc.rust-lang.org/nomicon/
https://rust-lang.github.io/unsafe-code-guidelines/

20 Z. Li, J. Wang, M. Sun, and J. Lui

that has been computed. If it is the case, the fixed-point algorithm is skipped
and the result is directly returned. If not, the fixed-point algorithm is performed
and the analysis result is cached in the lookup table.
Algorithm 2: Interprocedural analysis algorithm for FFIChecker
Input: Function: f , Arguments: args, Destination: dest,

State of the current basic block: σ, Summary Cache: cache
Output: Updated State: σ

1 begin
2 switch FunctionType(f) do
3 case Heap Allocation do
4 σ[dest]← Alloc
5 case Borrow Arguments do
6 σ[arguments that are borrowed]← Borrowed
7 case Move Arguments do
8 σ[arguments that are moved]←Moved
9 case FFI do

10 Run AnalyzeFunction and generate warnings if necessary
11 case LLVM Intrinsic or Standard Library do
12 Handle it through function models
13 otherwise do
14 AnalyzeFunction(f , args, dest, σ)

// Subroutines
15 Function AnalyzeFunction(f , args, dest, σ):
16 in_state← state generated by args
17 summary ← GetFunctionSummary(f , in_state)

// Set the state of the return value
18 σ[dest]← summary.ret_state

// Propagate the state of parameters
19 foreach (caller_arg, callee_arg) do
20 σ[caller_arg] = σ[callee_arg]

21 Function GetFunctionSummary(f , in_state):
// If the summary has been computed, directly return it

22 if (f, in_state) in cache then
23 return cache[(f, in_state)]

// Initialize initial state for the fixed-point algorithm
24 forall n do
25 State[n]← ⊥
26 foreach (state, param) in zip(in_state, f.parameters) do
27 State[param]← state

// Compute the summary and cache it
28 out_state← FixedPoint(f.CFG, State)
29 cache[(f, in_state)]← out_state
30 return out_state

	Detecting Cross-Language Memory Management Issues in Rust

